Mathematical maintenance models of vehicles’ equipment
Репозитарій Національного Авіаційного Університету
View Archive InfoField | Value | |
Title |
Mathematical maintenance models of vehicles’ equipment
|
|
Creator |
Раза, Ахмед
|
|
Subject |
digital avionics systems
629.735.083.02/06(043.3) |
|
Description |
Dissertation for obtaining a scientific degree of Doctor of Philosophy within the specialty 05.22.20 «Maintenance and repair of vehicles». – National Aviation University, Kyiv, 2018. The thesis addresses the critical scientific problem of creating the appropriate maintenance models for digital avionics systems and degrading equipment of vehicles, which increases the operational effectiveness of such systems significantly. The thesis research includes the analysis of the current state and models of digital avionics maintenance. The study describes the necessity for developing the mathematical maintenance models for redundant digital avionics systems, considering the discontinuous nature of their operation, continuous nature of in-flight testing, possibility of both permanent and intermittent failures and organization of several maintenance levels using various diagnostic tools for detecting both failure types. Another focus of the thesis is the analysis of modern trends and mathematical models of condition-based maintenance (CBM) of vehicles’ equipment. The necessity of developing new CBM mathematical models for degrading equipment of vehicles, considering the probabilities of correct and incorrect decisions when checking system suitability for use in the upcoming operation interval, and the possibility of joint determination of the optimum inspection schedule and replacement thresholds for systems that affect and do not affect safety have been substantiated. The scientific novelty of the primary results obtained in the course of the thesis research is as follows: 1. For the first time, mathematical models to evaluate the operational reliability indicators of continuously monitored line replaceable units/line replaceable modules (LRUs/LRMs) and redundant avionics systems over both finite and infinite time interval, which, unlike known models, consider the characteristics of both permanent and intermittent 2failures, have been developed. These models allow evaluating the impact of intermittent failures on the availability and mean time between unscheduled removals (MTBUR) of LRU/LRM. 2. For the first time, generalized expressions to calculate the average maintenance costs of redundant avionics systems, considering the impact of permanent and intermittent failures, have been developed for alternative maintenance options that differ by the number of maintenance levels (one, two or three), which allows choosing the optimal maintenance option during warranty and post-warranty periods. 3. For the first time, a mathematical model of CBM, based on condition monitoring at scheduled times has been developed, which, unlike the known models, considers the probabilities of correct and incorrect decisions made when checking system suitability. This model allows formulating the criteria of determining the optimal replacement threshold for each inspection time and substantially reduce the likelihood of system failure in the forthcoming interval of operation. 4. For the first time, generalized mathematical expressions to calculate the effectiveness indicators of CBM over a finite time interval, as well as the criteria of joint optimization of the inspection schedule and replacement thresholds for systems that affect or do not affect the safety, have been developed. These results allow significantly improve the availability, reduce average maintenance costs and reduce the number of inspections. The practical value of the results obtained in the thesis is as follows: 1. The techniques to calculate probabilistic and time-related indicators of maintenance effectiveness for digital avionics LRUs/LRMs over finite and infinite operating intervals have been developed. The proposed procedures allow to estimate the availability, operational reliability function (ORF), and mean time between unscheduled removals (MTBUR) of LRUs/LRMs during warranty and post-warranty maintenance periods for both federated avionics (FA) and integrated modular avionics (IMA) architectures; 2. A technique for minimizing the warranty maintenance cost of the redundant digital avionics systems has been developed, demonstrating (through the example of the ADIRS system of the Airbus A380 aircraft) that in the case of the optimal option of warranty maintenance, the average maintenance cost per aircraft decreases by 28 %; 33. A technique for minimizing the post-warranty maintenance cost of the redundant digital avionics systems has been developed. It demonstrates (through the example of the ADIRS system of the Airbus A380 aircraft) that a three-level maintenance option with an intermittent fault detector (IFD) at I and D levels, is optimal as it reduces the total expected maintenance costs by 11 times compared to a one-level option, and by over 8.5 times compared to a two-level option without IFD; 4. A technique for determining the optimal replacement thresholds when monitoring the condition of the degrading system at scheduled times has been developed, which allows to significantly reduce the system failure probability in the forthcoming interval of operation. 5. A technique for joint determination of the optimal replacement threshold and periodicity of suitability checking when monitoring the system condition has been developed, which allows to substantially increase the availability of systems while significantly reducing the number of inspections. The results of the thesis research may be used in the development and maintenance of FA and IMA systems, as well as degrading equipment of vehicles. |
|
Date |
2018-09-24T10:42:01Z
2018-09-24T10:42:01Z 2018-09-24 |
|
Type |
Manuscript
|
|
Identifier |
http://er.nau.edu.ua/handle/NAU/36298
|
|
Language |
en
|
|
Format |
application/pdf
application/pdf application/pdf |
|
Publisher |
National Aviation University
|
|