Record Details

METHOD OF FORMULATING INPUT PARAMETERS OF NEURAL NETWORK FOR DIAGNOSING GAS-TURBINE ENGINES

Репозитарій Національного Авіаційного Університету

View Archive Info
 
 
Field Value
 
Title METHOD OF FORMULATING INPUT PARAMETERS OF NEURAL NETWORK FOR DIAGNOSING GAS-TURBINE ENGINES
 
Creator Kulyk, Mykola
Dmitriev, Sergiy
Yakushenko, Oleksandr
Popov, Oleksandr
 
Subject gas-turbine engine
air-gas path
mathematical model of operational process
neural network
 
Description A method of obtaining test and training data sets has been developed. 弻ese sets are intended for train-
ing a static neural network to recognise individual and double defects in the air-gas path units of a gas-turbine engine.
弻ese data are obtained by using operational process parameters of the air-gas path of a bypass turbofan engine. 弻e
method allows sets that can project some changes in the technical conditions of a gas-turbine engine to be received,
taking into account errors that occur in the measurement of the gas-dynamic parameters of the air-gas path. 弻e op-
eration of the engine in a wide range of modes should also be taken into account
 
Date 2019-04-06T14:02:58Z
2019-04-06T14:02:58Z
2013-05
 
Type Article
 
Identifier 1648-7788 print / ISSN 1822-4180
http://er.nau.edu.ua/handle/NAU/38320
 
Language en_US
 
Relation 17(2) 2013;
 
Format application/pdf
 
Publisher AVIATION. Taylor&Francis
 

Технічна підтримка: НДІІТТ НАУ