Record Details

ENERGY LEVELS OF CONTACTS IN THE FRICTIONAL INTERACTION OF METAL-POLYMER AND SEMICONDUCTOR MATERIALS

Наукові журнали Національного Авіаційного Університету

View Archive Info
 
 
Field Value
 
Title ENERGY LEVELS OF CONTACTS IN THE FRICTIONAL INTERACTION OF METAL-POLYMER AND SEMICONDUCTOR MATERIALS
ЭНЕРГЕТИЧЕСКИЕ УРОВНИ КОНТАКТОВ ПРИ ФРИКЦИОННОМ ВЗАИМОДЕЙСТВИИ МЕТАЛЛОПОЛИМЕРНЫХ И ПОЛУПРОВОДНИКОВЫХ МАТЕРИАЛОВЭНЕРГЕТИЧЕСКИЕ УРОВНИ КОНТАКТОВ ПРИ ФРИКЦИОННОМ ВЗАИМОДЕЙСТВИИ МЕТАЛЛОПОЛИМЕРНЫХ И ПОЛУПРОВОДНИКОВЫХ МАТЕРИАЛОВ
ЕНЕРГЕТИЧНІ РІВНІ КОНТАКТІВ ПРИ ФРИКЦІЙНІЙ ВЗАЄМОДІЇ МЕТАЛО-ПОЛІМЕРНИХ ТА НАПІВПРОВІДНИКОВИХ МАТЕРІАЛІВ
 
Creator Вольченко, Александр Иванович
Журавлев, Дмитрий Юрьевич
Кашуба, Николай Васильевич
Витвицкий, Василий Степанович
Чуфус, Василий Михайлович
 
Subject friction pair; contact microprotrusions; energy levels; polymer and semiconductor materials

пара трения; микровыступы контактов; энергетические уровни; полимерные и полупроводниковые материал

пара тертя; мікровиступи контактів; енергетичні рівні; полімерні і напівпровідникові матеріали
УДК 621.891
 
Description The materials of the article show the types of contacts of microprotrusions of metal-polymer and semiconductor materials. The latter are modified in the form of tablets into the working surface of the polymer linings. Energy levels of microcontacts of friction pairs are illustrated. In the polymer lining, composed of inhomogeneous materials, there are amorphous and crystalline phases, there is a capture of a different kind - at the interfaces. When such a material is electrified, carriers will collect near this interphase boundary or vice versa, leave it, depending on which of the two conduction currents is greater: flowing to the charge boundary or leaving it. Differences in local conduction currents also lead to charge dissipation during the subsequent conduction of a thermally stimulated discharge, since in this case the currents flow in the opposite direction. A large increase in the work function of ions from the surface layer of the lining gives affinity to the electron. Purposeful reorientation of electrons to ions thus makes it possible to achieve equality of particle work due to this effect. When the working surface of the polymer lining reaches a temperature higher than permissible for its materials, burnout in the surface and subsurface layers of bonding components, which leads to the formation of liquid islands on the surface of the lining. It is believed that at the same time on the surface of the metal in contact with the liquid, a double electric layer is formed. The surface of the metal as a result of loss or trapping of ions acquires some chemical potential, and a certain charge is distributed over it. The opposite sign of the charge is in the liquid. In this case, the surface of the metal acquires some specific potential, establishing an equilibrium between the process of separation and deposition of ions. This potential depends on both the nature of the metal and the concentration of ions in the liquid. The polarization of the contact spots of the microprotrusions of the lining arising under these conditions is caused precisely by the presence of electrodes. This situation is rather easily explained in the limiting case when there is no mobility in carriers of any one polarity (for example, electrons) and there is no further generation of free carriers. With a decrease in the thickness of the polymer film, a situation may arise when the charges concentrated near the opposite boundaries of the contact in question begin to interact with each other, leading to a distortion of the potential barrier shape. The greatest thickness of the film, at which the interaction of boundary charges begins, can be considered the double value of such a contact parameter as the depth of penetration of the surface charge. The interaction of near-surface charges can cause a local minimum to form in the middle of the barrier, which in principle can lead to the intersection of the curve describing the envelope of the potential barrier with the Fermi level. Thus, the energy levels of various types of contacts of microprotrusions of friction pairs were estimated and their effect on the total energy load was illustrated.
В материалах статьи приведены типы контактов микровыступов металлополимерных и полупроводниковых материалов. Последние модифицированы в виде таблеток в рабочую поверхность полимерных накладок. Проиллюстрированы энергетические уровни микроконтактов пар трения.
У матеріалах статті наведені типи контактів мікровиступів металополімерних та напівпровідникових матеріалів. Останні модифіковані у вигляді таблеток в робочу поверхню полімерних накладок. Прілюстровані енергетичні рівні мікроконтактів пар тертя.
 
Publisher National Aviation University
 
Contributor


 
Date 2018-12-31
 
Type
 
Format application/pdf
 
Identifier http://jrnl.nau.edu.ua/index.php/PTZ/article/view/13323
10.18372/0370-2197.4(81).13323
 
Source Проблеми тертя та зношування; № 4(81) (2018); 21-32
Problems of Friction and Wear; № 4(81) (2018); 21-32
Проблемы трения и изнашивания; № 4(81) (2018); 21-32
 
Language uk
 

Технічна підтримка: НДІІТТ НАУ